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Determining Investment-Efficient Diameter Distributions for
Uneven-Aged Northern Hardwoods

B. Bruce Bare and Daniel Opalach

ABSTRACT. The constant “‘q’" of de Liocourt is often used to model the diameter dis-
tribution of uneven-aged forest stands and produces *‘balanced’’ size class distributions.
Claims that such distributions are the most efficient for uneven-aged management or
necessary to achieve sustention of production have led to the use of the concept in a
variety of management models. Using a northern hardwood mixed-species growth
model and a Weibull distribution function, we demonstrate that “‘balanced'’ diameter
distributions are not investment-efficient and are not necessary to achieve sustention of
production over a fixed cutting cycle. Results are very sensitive to per tree price and
maximum tree size assumptions. FOR. SCI. 34(1):243-249.

ADDITIONAL KEY WORDS. Balanced size class distributions, Weibull distribution, non-
linear programming, land expectation value, optimal harvesting.

BALANCED DIAMETER DISTRIBUTIONS associated with the residual growing stock in
uneven-aged forest stands are often characterized by de Liocourt’s (1898) constant
*q.” Leak (1964) and Meyer (1952) define a balanced uneven-aged forest as “‘one
that can produce a sustained yield while maintaining an essentially constant struc-
ture and volume.”” A balanced diameter distribution is expected to show a smooth
geometric progression of the number of trees in successive diameter classes, with
the ratio of the number of trees in a given diameter class to those in the next larger
class defined as ‘‘q.”” Tests of this theory in the United States have produced mixed
results (Pro: Meyer and Stevenson 1943; Schmelz and Lindsey 1965; Con: Murphy
and Farrar 1981; Hanley et al. 1975). Nevertheless, a variety of management models
are based on the assumption of a constant “‘q”’ (e.g., Hansen 1984, Solomon et al.
1986, Graham and Smith 1983, Alexander and Edminster 1977, Lyon 1983, Hall and
Bruna 1983).

Leak (1965), Meyer (1952, 1953), Murphy and Farrar (1982), and Moser (1976)
described the relationship between the exponential distribution function and the
constant “‘q.”” Subsequently, Hyink and Moser (1983), Stiff (1979), Martin (1982) and
Bare and Opalach (1987a, 1987b) used the Weibull distribution function to describe
the diameter distribution of uneven-aged forest stands. Because the exponential dis-
tribution function can be obtained as a special case of the Weibull (i.e., when the
shape parameter of the Weibull is set equal to 1), the use of the Weibull allows one to
test the assumptions that a balanced diameter distribution is most efficient for un-
even-aged management and is needed to achieve and maintain a sustainable equilib-
rium solution.

MODELING WITH THE WEIBULL

Martin (1982) used Adams and EK’s (1974) northern hardwood mixed-species growth
model in conjunction with a Weibull distribution function to determine optimal in-
vestment-efficient sustainable equilibrium diameter distributions. Such distributions
maximize value growth over a fixed cutting cycle for a given value of residual
growing stock. Further, the investment-efficient distribution that maximizes the land
expectation value!' is the preferred criterion if economic efficiency is the objective of
management and a sustainable equilibrium solution is desired.

The authors are Professor and Research Assistant, respectively, College of Forest Resources
and Center for Quantitative Science in Forestry, Fisheries and Wildlife, University of Wash-
ington, Seattle 98195. Manuscript received June 6, 1987.

! Land expectation value is the present value of the difference between periodic value
growth and the opportunity cost of holding land and timber over an infinite series of identical
cutting cycles.
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TABLE 1. Martin’s investment-efficient diameter distribution for northern hard-
woods—good site. (interest = 5%, cutting cycle = 3 yr; maximum tree = 23 in.)

Diameter class Trees/ac Price per tree
(in.) (residual) [€)]

6 126.6 0.14

8 46.5 0.34
10 17.1 0.60
12 6.3 4.23
14 2.3 6.77
16 0.8 9.45
18 0.3 12.31
20 0.1 16.05
22 0.0 19.46

Weibull Parameters: shape (¢) = 1.0, scale (b) = 1.999

Basal area = 59.9 ft2 Trees/ac = 200.1

q =272 Pulpwood growth = 2.50 cords
Sawtimber growth = 846 bf Pulpwood stocking = 10.87 cords
Sawtimber stocking = 1087 bf

Value growth = $53.99 Value of Growing Stock = $100
Land expectation value = $95 .

Note: In all tables involving the Weibull distribution, residual trees per acre are reported as
0.0 if they occur with a frequency less than 0.1 trees per acre. However, the Weibull distribu-
tion function assigns a nonzero probability to all tree diameters up to, and including, the max-
imum tree size specified.

Source: Martin (1982)

Using the Weibull distribution function, Martin characterized the residual diam-
eter distribution in terms of three decision variables: the two parameters of the Wei-
bull distribution and the number of trees. Not only did this reduce the dimensions of
the decision space of the optimization problem, it also facilitated the testing of the
assumption of a constant progression of the number of trees in successive diameter
classes. The mathematical formulation of the model is available elsewhere and is not
repeated here (e.g., Martin 1982, Bare and Opalach 1987a, 1987b). In addition,
Haight et al. (1985) and Haight (1985) provide useful insights regarding optimal con-
version strategies using the same growth model.

Based on the Adams and Ek (1974) growth model, Martin (1982) found that the
shape parameter (c) of the Weibull distribution function that maximized the land
expectation value was sufficiently close to 1 —implying the occurrence of a balanced
sustainable equilibrium diameter distribution for the residual stand. Thus, he re-
ported that use of the Weibull distribution function resulted in balanced diameter
distributions—at least for the growth model being used. Earlier, Adams (1976) used
a diameter class optimization algorithm and found that the optimal investment-effi-
cient diameter distribution that maximized land expectation value was not character-
ized by a constant ‘‘q.”” In an effort to clarify this apparent discrepancy, the fol-
lowing analysis was undertaken.

ANALYSIS AND DISCUSSION

Table 1 presents the optimal sustainable equilibrium investment-efficient diameter
distribution for an uneven-aged stand obtained using Adams and Ek’s (1974)
northern hardwood growth model as reported by Martin (1982). For this, and other
results reported herein, a five-year cutting cycle, 5% real rate of interest, and good
site land (i.e., average site index = 70) are assumed, and the optimal solution is the
one that maximizes the land expectation value.

Martin’s (1982) results in Table 1 assume that the Weibull shape parameter (c) is
equal to 1 —thereby assuring a balanced residual diameter distribution.? In addition

2 Martin (1982) originally did not constrain (c) to equal one, but after preliminary analysis
decided that it was sufficiently close. Thus, to simplify numerical work, it was set equal to 1.
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to this constraint, trees larger than 23 in. in diameter are not permitted in the residual
stand. As discussed by Bare and Opalach (1987a, 1987b), when the Weibull distribu-
tion function is used to describe the diameter distribution of the residual stand, se-
lection of a maximum tree size further constrains the Weibull parameters to assign
some nonzero probability to all size classes up to, and including, the maximum diam-
eter (See Table 1 note). Therefore, Martin (1982) presents constrained solutions to
the investment-efficient diameter distribution problem. Per tree prices used in
Martin’s analysis are also shown in Table 1. Using 2 in. diameter classes, Martin’s
optimal diameter distribution is characterized by a *‘q”’ of 2.72.

Using the same northern hardwood growth model and assumptions listed above,
but a different optimizing routine, an attempt was made to verify Martin’s results.
Whereas Martin used a gradient projection method, a direct search, derivative-free,
constrained nonlinear programming algorithm—The Complex Method (Box 1965)—
was used. As shown in Table 2, results replicate Martin’s solution, although a few
minor discrepancies are apparent. In addition, the number of trees to cut from each
diameter class at the end of each cutting cycle is shown. The Weibull shape param-
eter (¢) is constrained (o equal 1 in this verification of Martin’s (1982) results and
trees up to, and including, the maximum diameter of 23 in. are present (see Table 2
note).

Next, the constraint of a constant ‘‘q’’ (i.e., a Weibull distribution with shape
parameter (c) equal to 1) was removed, and the steady-state equilibrium problem was
resolved. With (c) unconstrained, the results, in Table 3 are superior to those in Table
2. Thus, relaxing the constraint of maintaining a balanced steady-state diameter dis-
tribution at the end of each cutting cycle leads to the attainment of a superior sus-
tainable equilibrium solution.

This result illustrates that constrained solutions are inferior to unconstrained solu-
tions, and calls into question the wisdom of constraining (c) to equal 1. Results
shown in Tables 1-3 presume that no tree larger than 23 in. in diameter is present in
the residual stand. Furthermore, the Weibull distribution assumption assigns non-

TABLE 2. Verification of Martin’s investment-efficient diameter distribution for
northern hardwoods—good site. (interest = 5%, cutting cycle = 5 yr.; maximum
tree = 23 in.)

Diameter class Trees/ac Trees/ac Price per tree
(in.) (residual) (cut) [63)

6 127.8 0.0 0.14

8 46.5 15.8 0.34
10 16.9 7.9 0.60
12 6.1 3.7 4.23
14 2.2 1.7 6.77
16 0.8 0.8 9.45
18 0.3 0.3 12.31
20 0.1 0.1 16.05
22 0.0 0.1 19.46

Weibull Parameters: shape (¢) = 1.0, scale (b) = 1.977

Basal area = 59.7 ft? Trees/ac = 200.7

q =275 Pulpwood growth = 2.53 cords
Sawtimber growth = 846 bf Pulpwood stocking = 10.88 cords
Sawtimber stocking = 1097 bf

Value growth = $53.34 Value of growing stock = $98.69

Land expectation value = $94.39

Note: Minor differences in results shown in Tables 1 and 2 are due largely to the optimization
algorithms used.

Note: In all tables involving the Weibull distribution, residual trees per acre are reported as
0.0 if they occur with a frequency less than 0.1 trees per acre. However, the Weibull distribu-
tion function assigns a nonzero probability to all tree diameters up to, and including, the max-
imum tree size specified.
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TABLE 3. Optimal investment-efficient diameter distribution for northern hard-
woods—good site. (interest = 5%, cutting cycle = 5 yr; maximum tree = 23 in.)

Diameter class Trees/ac Trees/ac Price per tree
(in.) (residual) (cut) @

6 118.3 0.0 0.14

8 86.6 0.2 0.34
10 32.3 12.4 0.60
12 8.7 7.5 4.23
14 1.8 2.9 6.77
16 0.3 0.9 9.45
18 0.0 0.2 12.31
20 0.0 0.0 16.05
22 0.0 0.0 19.46

Weibull Parameters: shape (c) = 1.43, scale (b) = 2.708

Basal area = 80.4 ft2 Trees/ac = 248.2

Pulpwood growth = 1.88 cords Pulpwood stocking = 16.30 cords
Sawtimber growth = 1271 bf Sawtimber stocking = 1103 bf
Value growth = $70.47 Value of growing stock = $118.36

Land expectation value = $136.71

Note. In all tables involving the Weibull distribution, residual trees per acre are reported as
0.0 if they occur with a frequency less than 0.1 trees per acre. However, the Weibull distribu-
tion function assigns a nonzero probability to all tree diameters up to, and including, the max-
imum tree size specified.

zero probabilities to all trees up to, and including, 23 in. in diameter. However, for
the unconstrained case shown in Table 3, trees larger than 17 in. in diameter are
effectively eliminated.?

The land expectation value associated with the solution shown in Table 3 is almost
50% greater than that shown in Table 2 where a constant ‘‘q’’ is presumed. This
solution also results in an additional 20 ft? of basal area and 48 more trees in the
residual stand. Lastly, sawtimber growth and residual stocking and pulpwood
stocking are greater than in the Table 2 solution.

To test the assumption that the Weibull distribution function adequately charac-
terizes uneven-aged northern hardwood stands, the Adams and Ek (1974) growth
model was reoptimized using a diameter class approach. Although Adams (1976)
previously reported investment-efficient solutions using a similar approach, results
reported here cannot be compared to his because of site quality and per-tree price
differences. These results provide the unconstrained optimum in that no binding
maximum tree size constraints or requirements to achieve a balanced diameter dis-
tribution are present.

As noted in Table 4, the use of a diameter class model does not require that trees
be present over the entire diameter class range as when the Weibull distribution
function is assumed. Clearly, the investment-efficient solution shown in Table 4 is
superior to the more highly constrained solution shown in Table 3 as the land expec-
tation value is over 85% greater. The other striking difference is that no trees larger
than 13 in. in diameter are carried in the residual stand, although more trees per acre
are present. This clearly shows the significance of maximum tree size requirements
when the Weibull distribution function is assumed to describe the residual diameter
distribution. Lastly, the solution shown in Table 4 does not exhibit characteristics of
a balanced diameter distribution.

Table 5 contains the optimal investment-efficient diameter distribution obtained

3 Although trees larger than 17 in. in diameter are present in the residual diameter distribu-
tion, they do not occur with a frequency greater than 0.1 trees/ac, and are reported as 0.0 in this
and all tables involving the Weibull distribution.
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TABLE 4. Reoptimization of Adams and Ek (1974) diameter class model for
northern hardwoods—good site. (interest = 5%, cutting cycle = 5 yr; maximum
tree = 23 in.)

Diameter class Trees/ac Trees/ac Price per tree
(in.) (residual) (cut) (€3]
6 117.0 0.0 0.14
8 86.0 0.0 0.34
10 66.6 0.0 0.60
12 0.1 22.1 4.23
14 0.0 0.0 6.77
16 0.0 0.0 9.45
18 0.0 0.0 12.31
20 0.0 0.0 16.05
22 0.0 0.0 19.46
Basal arca = 89.5 ft2 Trees/ac = 269.7
Pulpwood growth = 0.0 cords Pulpwood stocking = 21.35 cords
Sawtimber growth = 2040 bf Sawtimber stocking = 15 bf
Value growth = $93.94 Value of growing Stock = $86.36

Land expectation value = $253.65

Note: Although trees up to, and including, 23 inches were permitted, no trees larger than 13
inches were present in the optimal diameter class solution.

using the Weibull distribution function when the maximum tree size is restricted to
11 in. in diameter and (c) is not constrained to equal 1. These limits were imposed to
determine if the Weibull distribution function could adequately describe the optimal
diameter distribution produced by the diameter class optimization model (Table 4). A
previous attempt using a maximum tree size limitation of 13 in. in diameter failed to
replicate the diameter-class results and produced a land expectation value of only
$145.15/ac. The results shown in Table 5 illustrate that an 11 in. diameter maximum
tree size limitation very closely replicates the Table 4 solution. However, this may be

TABLE 5. Optimal investment-efficient diameter distribution for northern hard-
woods—good site. (interest = 5%; cutting cycle = 5 yr; maximum tree = 11 in.)

Diameter class Trees/ac Trees/ac Price per tree
(in.) (residual) (cut) $)

6 117.2 0.0 0.14

8 86.1 0.0 0.34
10 66.7 0.0 0.60
12 0.0 222 4.23
14 0.0 0.0 6.77
16 0.0 0.0 9.45
18 0.0 0.0 12.31
20 0.0 0.0 16.05
22 0.0 0.0 19.46

Weibull Parameters: shape (¢) = 0.952, scale (b) = 8.628

Basal area = 89.5 ft? Trees/ac = 270.0

Pulpwood growth = 0.0 cords Pulpwood stocking = 21.38 cords
Sawtimber growth = 2039 bf Sawtimber stocking = 0 bf
Value growth = $93.77 Value of growing stock = $85.71

Land expectation value = $253.69

Note: In all tables involving the Weibull distribution, residual trees per acre are reported as
0.0 if they occur with a frequency less than 0.1 trees per acre. However, the Weibull distribu-
tion function assigns a nonzero probability to all tree diameters up to, and including, the max-
imum tree size specified.
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largely due to the correspondence of the three-dimensional decision space within
which the optimization occurs and the three diameter classes to which trees can be
assigned. Further, it is not obvious that an analyst intent on using the Weibull distri-
bution function would specify an 11 in. diameter maximum tree size limitation on a
priori grounds. Thus, extreme care should be taken when using the Weibull distribu-
tion function to derive investment-efficient sustainable equilibrium diameter distri-
butions for uneven-aged stands.

Lastly, all solutions presented in Tables 1-5 are highly dependent on per-tree
price, cutting cycle, and interest rate assumptions. Although all tree prices are held
constant over time in real terms, they could be increased (decreased) to fit other
expectations. Undoubtedly, the discontinuous nature of the per-tree price curve used
by Martin (1982) is greatly influencing the solutions reported herein and may be
partly responsible for the observed behavior when the Weibull distribution function
is used.

CONCLUSIONS

Based on a reexamination of the optimization of the Adams and Ek (1974) growth
model, as reported by Adams (1976) and Martin (1982), it is concluded that: (a)
investment-efficient sustainable equilibrium diameter distributions for northern
hardwoods using this growth model are not balanced, (b) if the Weibull distribution
function is used to derive uneven-aged sustainable equilibrium diameter distribu-
tions, care must be taken to select appropriate maximum tree size limitations, and (c)
maximum tree size and per-tree price assumptions play a crucial role when the Wei-
bull distribution function is selected to describe the diameter distribution of uneven-
aged stands.
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